

COVID-19: Pathophysiology of Symptoms

How does a respiratory virus affect so many other organs/systems?

SARS-CoV-2 spike protein binding to ACE2

Virus invades cell by attaching to ACE2 protein ("receptor") on cell's surface

What is ACE2 protein?

- Normally breaks down ANGII in body.
- This function helps regulate body's RAAS—it's a healthy, protective "brake"
- If unchecked, ANGII will inflammation
 & cell death in lungs and heart

ACE2: angiotensin converting enzyme 2

ANGII: angiotensin II

RAAS: renin-angiotensin-aldosterone system

inner lining (endothelium) of blood vessels

Also: infects endothelium of

- > GI tract
- > heart

Ansomia (loss of smell)

Current thinking:

• SARS-CoV-2 does <u>NOT</u> infect neurons in brain's olfactory bulb (no ACE2 proteins).

in nasal cavity that provide support to neurons.

 Return of smell in weeks <u>not</u> consistent with neuron damage.

Respiratory symptoms

- Cough
- mucus production
- Pneumonia (mild or severe)
- **≻**Ground Glass Opacities
 - GGO = abnormal chest imaging (x-ray or CT scan: next slide)
- >ARDS: Acute Respiratory Distress Syndrome

Ground Glass Opacities (GGO)

COVID-19 patient (male, age 77, from Wuhan):

"patchy" GGO noted on Day 5, then progressively worsened...

Day 5

Day 15

Day 20

31

Shi et al., 2020

NORMAL: gas exchange in lungs

alveolus (plural: alveoli)
microscopic air sacs in lungs where
oxygen & carbon dioxide are
exchanged

- membrane does not allow fluid to cross
- alveoli should be filled with air, <u>never</u> fluid

ARDS: Acute Respiratory Distress Syndrome

Hyperinflammatory reaction damages alveolar membranes making them "leaky" (permeable) – causes alveoli to be flooded with fluid

Gastrointestinal symptoms

- 50-60% cases report at least one GI symptom:
 - loss of appetite (anorexia)
 - nausea or vomiting
 - diarrhea
 - bloating, abdominal pain, etc.
- May begin with only GI symptoms
 - Wuhan study of 1141 cases: 16% presented with only GI symptoms

Clotting can occur...

in **BRAIN**:

ischemic stroke

in LUNG:

PE (pulmonary embolism)

in LEG:

DVT (deep vein thrombosis)

in CORONARY ARTERIES:

MI (myocardial infarction)

Use anticoagulant as prophylaxis for <u>all</u> hospitalized patients

Low molecular weight (LMW) heparin preferred

Also: COVID-19 inflammation can cause existing atherosclerotic plaques in coronary arteries to rupture, resulting in clots.

"COVID Toe" (chilblain-like acral lesions)

Chilblain (or pernio) lesions are painful red or purple lesions that emerge on fingers or toes (acral surfaces) due to cold temps in winter.

Hypotheses:

• caused by *microclots* and/or *inflammation* (?)

 more common in mild or asymptomatic
 COVID-19 (?)

PRE-EXISTING Cardiovascular...

PRE-EXISTING

cardiovascular disease

↑ susceptibility & severity of COVID-19

Underlying comorbidities:

- Hypertension
- Coronary heart disease
- Diabetes

heart failure

can be pre-existing or new complication

CV disorders =
higher risk
to get COVID...

NEW-ONSET Cardiovascular...

COVID can also cause new CV disorders...

23% developed new-onset HF in Wuhan...

heart failure

can be pre-existingor new complication

NEW-ONSET complications

Acute cardiac injury
↑ Troponin level

Thromboembolism

clot breaks off & obstructs another blood vessel

Arrhythmia

abnormal rhythm

ALL Cardiovascular Issues

PRE-EXISTING

cardiovascular disease

↑ susceptibility & severity of COVID-19

Underlying comorbidities:

- Hypertension
- Coronary heart disease
- Diabetes

heart failure

can be pre-existing **or** new complication

NEW-ONSET complications

inflammation of Myocarditis heart muscle

Acute cardiac injury↑ Troponin level

Thromboembolism

clot breaks off & obstructs another blood vessel

Arrhythmia

abnormal rhythm

Definitions:

HEART FAILURE: heart unable to pump sufficient blood to meet body's oxygen needs

23% w/COVID developed new-onset HF in Wuhan

CARDIOMYOPATHY: abnormal <u>remodeling</u> of heart muscle to be enlarged, thicker, or more rigid

caused by conditions that overwork/stress heart

ACUTE CORONARY SYNDROME (angina or MI): cause sudden reduced flow blood flow to heart

MI can cause acute cardiac injury

Small randomized study of 100 adults w/ COVID-19:

(2/3 were mild; 1/3 were severe)

- ▶ 78% had cardiac involvement abnormal MRI (remodeling heart muscle)
- ▶ 60% had ongoing myocardial inflammation

↑ troponin (enzyme released by damaged cardiac cells)

Cardiovascular complications

primarily caused by

SYSTEMIC

(body-wide) inflammation

Clarification: "systemic" is not LOCALIZED (one part of body) such as broken ankle, infected wound, UTI

41

Nishiga et al., 2020

STAGES OF COVID-19

Stage II (Pulmonary phase) Stage III
(Hyperinflammation)

symptoms:

test results:

mild: fever, fatigue, cough

low WBC in Stage I = poorer outcome

pneumonia

abnormal chest imaging

ARDS, shock, cardiac injury

nflam. & cardiac biomarkers

Immunological Effects

Exaggerated Immune Response: "Cytokine storm"

Stage III Hyperinflammation

- Massive release of inflammatory mediator proteins (cytokines & chemokines)
- Immune system attacks own body cells, resulting in cell death

In Stage III, dexamethasone (steroid) can suppress immune over-response.

(Do not give in earlier stages or will suppress healthy immune response.)

Early Warning: Risk of ARDS & Mortality

Blood Test / Biomarker

If abnormally high, this indicates:

FYI

1. CRP (C-reactive protein)		acute or chronic inflammation	Direct measure of inflammation (does not reveal exact cause or location)
2. Ferritin	1	severe inflammation, cytokine storm	Pro-inflammatory cytokines ferritin release into bloodstream (to keep iron from being used by pathogens)
3. PCT (procalcitonin)	1	bacterial infection, sepsis	Rises in response to bacterial (rather than viral or non-infectious) inflammation.
4. D-Dimer	1	MI, PE, DVT, or diffuse (body-wide) hypercoagulation	Indicates blood clots

FYI: More Details on Lab Tests

#1-3 are Acute Phase Reactants (proteins that indicate acute inflammation)

1. CRP (C-reactive protein)	Protein produced by liver in response to inflammation.	
2. Ferritin	Protein that stores iron for future use. Also monitored in anemia (low). In inflammation: WBCs called macrophages cause its release, which keeps iron from being scavenged by pathogens.	
3. PCT (procalcitonin)	Precursor (pro-protein) of calcitonin, hormone that balances body's calcium and phosphorus levels. Normally produced only by thyroid. Bacterial inflammation causes multiple organs to produce PCT and release directly into bloodstream.	
4. D-Dimer	Protein fragment created when body dissolves a clot.	

Cytokine storm damages Blood-Brain Barrier (BBB) causing cerebral edema

Current thinking:

Severe CNS symptoms are from brain swelling rather than virus directly acting on brain cells.

Capillaries in cross-section

Neurologic symptoms (severe)

Central nervous system (CNS):

- Encephalopathy (general term for brain dysfunction)
 - can manifest as confusion, delirium, seizures or coma
- Ischemic stroke
- Anoxic brain injury (lack of O₂ to brain)

Peripheral nervous system (PNS):

Guillain-Barré syndrome (temporary paralysis)

Pregnancy & Pediatrics

Risks for pregnant women and infants (JAMA Pediatrics):
 Neonatal Early-Onset Infection With SARS-CoV-2 in 33 Neonates Born to
 Mothers With COVID-19 in Wuhan, China

 New complications in children (Minnesota Department of Health): Multisystem Inflammatory Syndrome In Children (MIS-C)

Please use your knowledge:

Help manage the "infodemic"

Overabundance of information – some accurate and some not – occurring during a pandemic, which can undermine public safety.

WHO's virtual global conference on Infodemic Management:

https://www.who.int/teams/risk-communication/infodemic-management/3rd-virtual-global-who-infodemic-management-conference

Misinformation is like a virus: do your part to

Flatten the infodemic curve...

IF YOU SEE COVID-19 MISINFORMATION

- DON'T ENGAGE If you reply, share, or quote
- misinformation, you help to spread it.
- If someone you know is sharing misinformation, message them privately and ask them not to.
- MESSAGE PRIVATELY 4 REPORT
- remove that content. INSTEAD, SPREAD OFFICIAL ADVICE

Drown out fake news by sharing official scientific advice, as well as posts promoting good causes in tough times.

www.counterhate.co.uk

Twitter @ccdhate | Insta @counterhate | FB @ccdhate

BLOCK THEM

If someone you don't know is

sharing misinformation, block them.

Report misinformation to platforms

or group admins asking them to

COVID-19

Raney Linck DNP, RN

RNnext

- COVID-19 Overview
- Pathophysiology
- Transmission & Precautions

- Virus Testing & Vaccines
- Epidemiology & Tracing
- Ethics, Peds/OB
 Mental Health

2. Pathophysiology of Symptoms: References

- Ackermann et al. (2020, July 9). Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. New England Journal of Medicine, 383(2), 120-128. https://doi.org/10.1056/NEJMoa2015432
- Anesi, G. L. (2020, July 15). Coronavirus disease 2019 (covid-19): Critical care and airway management issues. *UpToDate*. https://www.uptodate.com/contents/coronavirus-disease-2019-covid-19-critical-care-and-airway-management-issues
- Begley, S. (2020, June 26). Watch: It's not just the lungs: The Covid-19 virus attacks like no other 'respiratory' infection. *STAT*. https://www.statnews.com/2020/06/26/from-nose-to-toe-covid19-virus-attacks-like-no-other-respiratory-infection/
- Brann et al. (2020, July 28). Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. *Science Advances, eabc5801*. https://doi.org/10.1126/sciadv.abc5801
- Cleveland Clinic. (2020b, March 20). Here's the damage coronavirus (COVID-19) can do to your lungs. https://health.clevelandclinic.org/heres-the-damage-coronavirus-covid-19-can-do-to-your-lungs/
- Cron, R. Q., & Behrens, E. M. (Eds.). (2019). *Cytokine storm syndrome*. Springer. https://doi.org/10.1007/978-3-030-22094-5
- Cuker, A., & Peyvandi, F. (2020, July 23). Coronavirus disease 2019 (COVID-19): Hypercoagulability. *UpToDate*. https://www.uptodate.com/contents/coronavirus-disease-2019-covid-19-hypercoagulability
- Elkind et al. (2020, July 21). Coronavirus disease 2019 (COVID-19): Neurologic complications and management of neurologic conditions. *UpToDate*. https://www.uptodate.com/contents/coronavirus-disease-2019-covid-19-neurologic-complications-and-management-of-neurologic-conditions
- Feldman et al. (2020, July 14). Coronavirus disease 2019: Cutaneous manifestations and issues related to dermatologic care. *UpToDate*. https://www.uptodate.com/contents/coronavirus-disease-2019-covid-19-cutaneous-manifestations-and-issues-related-to-dermatologic-care
- Fotuhi et al. (2020). Neurobiology of COVID-19. *Journal of Alzheimer's Disease, 76*(1), 3–19. https://doi.org/10.3233/jad-200581
- Gulhar et al. (2020, May). Physiology, acute phase reactants. *StatPearls*. https://www.ncbi.nlm.nih.gov/books/NBK519570/
- Harding et al. (2020). Lewis's medical-surgical nursing (11th ed.). Elsevier.
- Huang et al. (2020). C-reactive protein, procalcitonin, D-dimer, and ferritin in severe coronavirus disease-2019: A meta-analysis. *Therapeutic advances in respiratory disease*, *14*, 1753466620937175. https://doi.org/10.1177/1753466620937175
- Jiang, K. (2020, July 24). How covid-19 causes loss of smell. *Harvard Medical School News and Research*. https://hms.harvard.edu/news/how-covid-19-causes-loss-smell
- Luo et al. (2020). Don't overlook digestive symptoms in patients with 2019 novel coronavirus disease (COVID-19). Clinical Gastroenterology and Hepatology, 18(7), 1636-1637. https://doi.org/10.1016/j.cgh.2020.03.043
- Maddox, S. (2017, March 18). Blood-brain barrier and the spinal cord. *Christopher and Dana Reeve Foundation*. https://www.christopherreeve.org/blog/research-news/blood-brain-barrier-the-spinal-cord
- Matheson, N. J., & Lehner, P. J. (2020). How does SARS-CoV-2 cause COVID-19? *Science*, *369*(6503), 510–511. https://doi.org/10.1126/science.abc6156

- McIntosh, K. (2020a, April 4). Coronavirus disease (COVID-19). *UpToDate*. https://www.uptodate.com/contents/coronavirus-disease-2019-covid-19
- Nishiga et al. (2020). COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives. Nature Reviews Cardiology, 17(9), 543–558. https://doi.org/10.1038/s41569-020-0413-9
- Noun Project. (2020). *Icons for everything*. https://thenounproject.com
- Pinto, D. S. (2020, June 5). Coronavirus disease 2019: Myocardial infarction and other coronary artery disease issues. *UpToDate*. https://www.uptodate.com/contents/coronavirus-disease-2019-covid-19-myocardial-infarction-and-other-coronary-artery-disease-issues
- Pons et al. (2020). The vascular endothelium: The cornerstone of organ dysfunction in severe SARS-CoV-2 infection. *Critical Care, 24*(1). https://doi.org/10.1186/s13054-020-03062-7
- Rabin, R. C. (2020, May 5). What is 'covid toe'? Maybe a strange sign of coronavirus infection. *New York Times*. https://www.nytimes.com/2020/05/01/health/coronavirus-covid-toe.html
- Ranard et al. (2020, June 5). Approach to acute cardiovascular complications in Covid-19 infection. *Circulation:* Heart Failure, 13(7). https://dx.doi.org/10.1161/circheartfailure.120.007220
- Shi et al. (2020). Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study. *The Lancet Infectious Diseases, 20*(4), 425–434. https://doi.org/10.1016/s1473-3099(20)30086-4
- Siriam et al. (2020, May 14). What is the ACE2 receptor, how is it connected to coronavirus and why might it be key to treating COVID-19? The experts explain. *The Conversation*.

 https://theconversation.com/what-is-the-ace2-receptor-how-is-it-connected-to-coronavirus-and-why-might-it-be-key-to-treating-covid-19-the-experts-explain-136928
- Smith, D. G. (2020, May 29). Coronavirus may be a blood vessel disease, which explains everything. *Medium*. https://elemental.medium.com/coronavirus-may-be-a-blood-vessel-disease-which-explains-everything-2c4032481ab2
- Toscano et al. (2020). Guillain–Barré Syndrome associated with SARS-CoV-2. *New England Journal of Medicine,* 382(26), 2574–2576. https://doi.org/10.1056/nejmc2009191
- Tran, J. (2020, July 23). Can hydroxychloroquine and chloroquine be used to treat coronavirus (COVID-19)? GoodRx. https://www.goodrx.com/blog/coronavirus-medicine-chloroquine-hydroxychloroquine-as-covid19-treatment/
- Vane, S. V. (2020, July 13). Coronavirus disease 2019: Issues related to gastrointestinal disease in adults. *UpToDate*. https://www.uptodate.com/contents/coronavirus-disease-2019-covid-19-issues-related-to-gastrointestinal-disease-in-adults
- Weill Cornell Medicine. (2020, July 2). What is known about Covid-19 and abnormal blood clotting. https://news.weill.cornell.edu/news/2020/07/what-is-known-about-covid-19-and-abnormal-blood-clotting
- Ye et al. (2020). The pathogenesis and treatment of the 'cytokine storm' in COVID-19. *The Journal of Infection*, 80(6), 607–613. https://doi.org/10.1016/j.jinf.2020.03.037
- Zimmer, K. (2020a, July 17). Could covid-19 trigger chronic disease in some people? *The Scientist*.

 https://www.the-scientist.com/news-opinion/could-covid-19-trigger-chronic-disease-in-some-people-67749